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1 Introduction

Our main result is a strengthening of the theorem of Krstić-McCool from the
title.

Proposition A The group SL2

(
Z[t, t−1]

)
is not finitely presented, indeed it

is not even of type FP2 .

It will be clear from our proof that Z can be replaced in Proposition A with
any ring of integers in an algebraic number field. Note that the theorem of
Krstić-McCool [5] also allows for this replacement as well as for many other
generalizations of the ring Z[t, t−1], which include in particular any ring of the
form J

[
t, t−1

]
where J is an integral domain.

Let us recall the definition of type FP2 .

Type FPs A group Γ is of type FPs if Z, regarded as a ZΓ-module via the
trivial action, admits a partial projective resolution

Ps → Ps−1 → · · · → P1 → P0 → Z→ 0

by finitely generated ZΓ-modules Pi .

Every group is of type FP0 . Type FP1 is equivalent to the property of finite
generation. Every finitely-presented group is of type FP2 , but Bestvina-Brady
showed the converse does not hold in general [1, Example 6.3(3)].

Purpose In [4], we studied finiteness properties of subgroups of linear re-
ductive groups arising from rings of functions on algebraic curves defined over
finite fields. For example, we showed that SLn(Fq[t]) is not of type FPn−1 and
SLn

(
Fq

[
t, t−1

])
is not of type FP2(n−1) where Fq is a finite field.

We wrote this paper to show how the techniques in [4] might be applied to a
more general class of groups.

In this paper we stripped down the general proof of the main result from [4] to
the special case of showing that SL2

(
Fq

[
t, t−1

])
is not of type FP2 , and then

made some modest alterations until we arrived at the proof of Proposition A
presented below.

It seems likely that more results along these lines can be proved, but it is not
clear to us how much the results in [4] can be generalized. Below we phrase a
question that seems a good place to start.
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Rings of functions on curves Let C be an irreducible smooth projective
curve defined over an algebraically closed field k . We let k(C) be the field of
rational functions defined on C , and we denote the set of nonzero elements of
this field by k(C)∗ .

For each point x ∈ C , there is a discrete valuation vx : k(C)∗ → Z that assigns
to any nonzero function f on C its vanishing order at x. Formally, we extend
vx to all of k(C) by vx(0) := ∞.

We let S1, S2, . . . , Sm ⊆ C be collections of pairwise disjoint finite nonempty
sets of closed points in C . We call a ring R ≤ k(C) containing some noncon-
stant function and the constant function 1 an m-place ring if the following two
conditions are satisfied:

(1) For all f ∈ R and all x ∈ C − (
⋃m

i=1 Si) , we have vx(f) ≥ 0.

(2) If there is an i, an x ∈ Si , and an f ∈ R such that vx(f) < 0, then
vy(f) < 0 for all y ∈ Si .

For example, if P1 is the projective line, then k
(
P1

)
is isomorphic to the field

k(t) of rational functions in one variable. Thus, if J is a subring of k , then
J [t] ≤ k

(
P1

)
is a 1-place ring with S1 = {∞}, while J

[
t, t−1

]
is a 2-place

ring with S1 = {∞} and S2 = {0}. For an example of a 1-place ring R

that obeys condition 2 nontrivially, we can take R = Z
[

1
t2−2

]
≤ C(t) with

S1 =
{√

2,−√2
}

.

Note that the definition of an m-place ring is a generalization of the definition
of a ring of S -integers of a global function field.

Finiteness properties of linear groups We ask the following

Question B Is there an example of an m-place ring R such that SLn(R) is
of type FPm(n−1) ?

Specifically, is there an n ≥ 2 such that SLn(Z[t]) is of type FPn−1 or such
that SLn

(
Z[t, t−1]

)
is of type FP2(n−1) ?

There seems to be no known example as above, though relatively few candi-
dates have been examined for this property. Krstić-McCool [5], [6] proved that
SL2

(
J
[
t, t−1

])
and SL3(J [t]) are not finitely presented for any integral domain

J . In [4], we prove that there exist no examples when R is a ring of S -integers
of a global function field. Examples of such rings include Fq[t] and Fq

[
t, t−1

]
.
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We also know that there are no examples as asked for in Question B when
m = 1 and n = 2. We give a proof of this fact in Section 4. This is an easy
result, but as this general problem has not been studied extensively, it appears
not to have been stated in this form in the literature.

About the proof Our proof of Proposition A is geometric in that it employs
the action of SL2

(
Z[t, t−1]

)
on a product of two Bruhat-Tits trees. It is essen-

tially a special case of our proof that arithmetic subgroups of SLn over global
function fields are not of type FP∞ [4]. The proof uses a result of K.Brown’s
which requires the action to have “nice” stabilizers. Unfortunately, the sta-
bilizer types of SL2(R) are unknown to us for many of the more interesting
2-place rings R. This prevents us from applying our proof to groups other than
SL2

(O[
t, t−1

])
where O is the ring of integers in an algebraic number field.

Other finiteness properties As an aside, we point out a few loosely related
facts. In [6], Krstić-McCool showed that SL3(J [t]) is not finitely presented for
any integral domain J . Suslin proved in [9] that SLn(Z[t]) and SLn

(
Z[t, t−1]

)
are finitely generated by elementary matrices when n ≥ 3. It is not known
whether SL2

(
Z[t, t−1]

)
is also generated by elementary matrices. In fact, even

finite generation is an open problem for this group.

Homology Our proof of Proposition A can be seen as a variant of Stuhler’s
proof [8] that SL2

(
Fq

[
t, t−1

])
is not of type FP2 . As Stuhler’s proof establishes

the stronger fact that the second homology H2

(
SL2

(
Fq

[
t, t−1

])
;Z

)
is infinitely

generated, it is natural to wonder if the proof of Proposition A below can be
extended to show that H2

(
SL2

(
Z[t, t−1]

)
;Z

)
is infinitely generated.

Type Fs We will not use type Fs in this paper, but as it is related to type
FPs , we recall its definition here.

A group Γ is of type Fs if there exists an Eilenberg-MacLane complex K(Γ, 1)
with finite s-skeleton. For s ≥ 2, a group is of type Fs if and only if it is
finitely presented and of type FPs . In general, type Fs is stronger than type
FPs .

Outline of the paper In Section 2, we present the main body of the proof
of Proposition A, leaving the verification that cell stabilizers are well-behaved
for Section 3. In Section 4, we comment on Question B.
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2 The action on a product of trees

Let v∞ be the degree valuation on Q(t) given by

v∞

(
r(t)
s(t)

)
= deg(s(t))− deg(r(t)) ,

and let v0 be the valuation at 0, that is, the valuation corresponding to the
irreducible polynomial t ∈ Q[t]. Thus

v0

(
r(t)
s(t)

tn
)

= n

if t does not divide r(t) nor s(t).

Let T∞ (resp. T0 ) be the Bruhat-Tits tree associated to SL2(Q(t)) with the
valuation v∞ (resp. v0 ). We consider these trees as metric spaces by assigning
a length of 1 to each edge. For a definition as well as for many of the facts we
will use in this proof, we refer to Serre’s book on trees [7].

Outline We put
X := T∞ × T0,

and we let SL2

(
Z[t, t−1]

)
act diagonally on X .

We will begin by finding an SL2

(
Z[t, t−1]

)
-invariant cocompact subspace X0 ⊆

X . Then for each n ∈ N , we will construct a 1-cycle γn in X0 with the
property that for any SL2

(
Z[t, t−1]

)
-invariant cocompact subspace Y ⊆ X

containing X0 , there exists some n ∈ N such that γn represents a nontrivial
element of the first homology group H1(Y ).

A direct application of K. Brown’s filtration criterion then shows that
SL2

(
Z[t, t−1]

)
is not of type FP2 as long as the cell stabilizers of the

SL2

(
Z[t, t−1]

)
-action on X are not of type FP2 . We leave the verification

of this last fact for Section 3.
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Finding a cocompact subspace A crucial part of our construction will take
place in a flat plane inside X , which we shall describe now.

Let O∞ ≤ Q(t) be the valuation ring associated to v∞ , that is, the ring of all
f ∈ Q(t) with v∞(f) ≥ 0. Let L∞ ⊆ T∞ be the unique bi-infinite geodesic
stabilized by the diagonal subgroup of SL2(Q(t)) . We parameterize L∞ by an
isometry l∞ : R → L∞ such that l∞(0) is the unique vertex stabilized by
SL2(O∞) and such that the end corresponding to the positive reals is fixed by
all upper triangular matrices in SL2(Q(t)). Analogously, we define l0 : R→ L0 .
The plane we shall consider is the product

L∞ × L0.

We define a diagonal matrix D ∈ SL2

(
Z[t, t−1]

)
by:

D :=
(

t 0
0 t−1

)
.

Note that for any n ∈ Z, we have

Dn · (l∞(0) , l0(0)) = (l∞(2n) , l0(−2n)).

Hence, if we denote by V the line in L∞×L0 of the form {(l∞(s) , l0(−s))}s∈R ,
then V has a compact image under the quotient map

π : X −→ SL2

(
Z[t, t−1]

)∖X .

Note that
X0 := π−1(π(V )) ⊆ X

is an SL2

(
Z[t, t−1]

)
-invariant cocompact subspace.

A family of loops in X0 For any n ∈ Z, we define the unipotent matrix
Un ∈ SL2

(
Z[t, t−1]

)
as

Un =
(

1 tn

0 1

)
.

Note that Un fixes a point of the form (l∞(s) , l0(s′)) ∈ L∞ × L0 if and only if
s ≥ n and s′ ≥ −n. Moreover, any points in the plane L∞ × L0 that are not
fixed by Un are moved outside of L∞ × L0 .

For all n ∈ N, we define the geodesic segment σn ⊆ V to be the segment
with endpoints (l∞(−n) , l0(n)) and (l∞(n) , l0(−n)). Note that Un fixes the
endpoint of σn given by (l∞(n) , l0(−n)) whereas U−n fixes its other endpoint
(l∞(−n) , l0(n)). Since Un and U−n commute, the union of geodesic segments

γn := σn ∪ (Un · σn) ∪ (U−n · σn) ∪ (UnU−n · σn)

is a loop. Note that γn ⊆ X0.
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How the loops can be filled It is easy to describe a filling disc for γn in
X . Just let ∆n be the closed triangle with geodesic sides and vertices at the
endpoints of σn and at the point (l∞(n) , l0(n)), which is fixed by both Un and
U−n . Then we define Cn to be the union of triangles

Cn := ∆n ∪ (Un ·∆n) ∪ (U−n ·∆n) ∪ (UnU−n ·∆n) .

Since X is a 2-complex, it does not allow for simplicial 3-chains (using any
appropriate simplicial decomposition of X ). Since X is contractible, it fol-
lows that there are no nontrivial simplicial 2-cycles. Hence, there is a unique
2-chain bounding γn , and this consists of the simplices forming Cn . Since
(l∞(n) , l0(n)) ∈ Cn, we have:

Lemma 2.1 Each loop γn ⊆ X0 represents a nontrivial class in the first
homology group of X − {(l∞(n) , l0(n))} .

Note how our proof relies on the commutator relations UnU−n = U−nUn that
were also essential in the argument of Krstić-McCool [5].

An unbounded sequence in the quotient We will need to know that the
points (l∞(n) , l0(n)) move farther and farther away from X0 . We will use
this to show that for any SL2

(
Z[t, t−1]

)
-invariant cocompact subspace Y ⊆ X

containing X0 , there exists some n ∈ N such that γn represents a nontrivial
element of the first homology group H1(Y ).

Actually, it suffices to prove our claim for “half of the points”:

Lemma 2.2 The sequence {π((l∞(2n) , l0(2n)))}n∈N is unbounded in the quo-
tient space SL2

(
Z[t, t−1]

) \X.

Proof Note that SL2(Q(t))× SL2(Q(t)) acts on T∞ × T0 componentwise and
recall that the valuations v∞ and v0 define a metric on SL2(Q(t))× SL2(Q(t))
so that vertex stabilizers are bounded subgroups. Thus, to prove that a set of
vertices in the quotient SL2

(
Z[t, t−1]

) \X is not bounded, it suffices to prove
that it has an unbounded preimage under the canonical projection

SL2

(
Z[t, t−1]

)∖SL2(Q(t))× SL2(Q(t)) −→ SL2

(
Z[t, t−1]

)∖X

where SL2

(
Z[t, t−1]

)
is embedded diagonally in SL2(Q(t))× SL2(Q(t)) .

Put A := (D, D−1) ∈ SL2(Q(t))× SL2(Q(t)) , and observe that

An · (l∞(0) , l0(0)) = (l∞(2n) , l∞(2n)).
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As we have argued, it suffices to prove that the sequence SL2

(
Z[t, t−1]

)
An is

unbounded in SL2(Q(t))× SL2(Q(t)) modulo SL2

(
Z[t, t−1]

)
. So assume, for a

contradiction, this sequence is bounded. By definition, this means that there is
a global constant C satisfying the following condition:

For any n ∈ N, there is a matrix Mn =
(

an bn
cn dn

)
∈ SL2

(
Z[t, t−1]

)

such that the values of v∞ of the coefficients of MnDn are bounded
from below by C and the values of v0 of the coefficients of MnD−n

are also bounded from below by C .

Recall that D =
(

t 0
0 t−1

)
and that v∞(t) = −1 whereas v0(t) = 1. Since

C ≤ v∞(antn) = v∞(an) + nv∞(t) = v∞(an)− n

and
C ≤ v0

(
ant−n

)
= v0(an)− nv0(t) = v0(an)− n

we find that v∞(an) ≥ 1 and v0(an) ≥ 1 whenever n ≥ 1 − C , which implies
an = 0. However, the same argument shows cn = 0, for n ≥ 1− C . But then,
M1−C 6∈ SL2

(
Z[t, t−1]

)
.

Brown’s criterion The following is an immediate consequence of [3, Theo-
rem 2.2].

Lemma 2.3 Suppose a group Γ acts by cell-permuting homeomorphisms on a
contractible CW-complex X such that stabilizers of d-cells are of type FPs+1−d .
Assume that X admits a filtration

X0 ⊆ X1 ⊆ X2 ⊆ · · · ⊆ X =
⋃

j∈N
Xj

by Γ-invariant, cocompact subcomplexes Xj . Then Γ is not of type FPs+1 if
each of the reduced homology homomorphisms

H̃s(X0) −→ H̃s(Xj)

is nontrivial.

In the following section, we will verify that cell stabilizers of the SL2

(
Z[t, t−1]

)
-

action on X are of type FP∞ . Assuming this hypothesis for the moment, we
can finish the proof of Proposition A as follows:
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Proof of Proposition A The family of loops γn is contained within the co-
compact subspace X0 , which is a subcomplex of (a suitable subdivision) of X .
Since the quotient SL2

(
Z[t, t−1]

) \X has countably many cells, we can extend
X0 to a filtration

X0 ⊆ X1 ⊆ X2 ⊆ X3 ⊆ · · · ⊆ X

of X by SL2

(
Z[t, t−1]

)
-invariant, cocompact subcomplexes Xj .

By Lemma 2.2, for each index j there is a natural number n such that

Xj ⊆ X − {(l∞(n) , l0(n))} .

Therefore, by Lemma 2.1, γn represents a nontrivial class in H̃1(Xj), thus
showing that

H̃1(X0) −→ H̃1(Xj)

is nontrivial. By Lemma 2.3, SL2

(
Z[t, t−1]

)
is not of type FP2 .

3 Finiteness properties of cell stabilizers

It remains to verify the hypothesis about cell stabilizers. Borel and Serre [2,
11.1] have shown that arithmetic groups are of type F∞ . Therefore, the follow-
ing lemma proves what we need, and more:

Lemma 3.1 The cell stabilizers of the SL2

(
Z[t, t−1]

)
-action on X are arith-

metic groups.

This section is devoted entirely to the proof of this lemma.

Observation 3.2 The set B := {tn n ∈ Z} is a Q-vector space basis for
Q[t, t−1] such that the subring Z[t, t−1] consists precisely of those elements in
Q[t, t−1] whose coefficients with respect to B are all in Z.

Stabilizers of standard vertices We fix the following family of standard
vertices in X . For j ∈ N, put

xj := (l∞(j) , l0(0)).

Recall that SL2(Q(t)) acts on the tree T∞ . The vertex l∞(j) ∈ T∞ has the
stabilizer{(

a b
c d

)
∈ SL2(Q(t)) v∞(a) , v∞(d) ≥ 0; v∞(b) ≥ −j; v∞(c) ≥ j

}
.
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Thus, the stabilizer StabQ[t,t−1](xj) of the vertex xj under the diagonal
SL2

(
Q[t, t−1]

)
-action on X = T∞ × T0 is

{(
a b
c d

)
∈ SL2

(
Q[t, t−1]

) v∞(a) , v∞(d) ≥ 0; v∞(b) ≥ −j; v∞(c) ≥ j
v0(a) , v0(b) , v0(c) , v0(d) ≥ 0

}
,

which is an affine algebraic Q-group: Because of the bounds on the valuations
v∞ and v0 , each matrix in StabQ[t,t−1](xj) can be considered as a 4-tuple
(a, b, c, d) in the finite dimensional Q-vector space V0 × Vj × Vj × V0 where:

Vj :=

{
j∑

i=0

qit
i qi ∈ Q

}

Vj :=

{
Q for j = 0
{0} for j > 0

The requirement that the determinant be 1 translates into a system of algebraic
equations defining an affine variety in V0×Vj×Vj×V0. This variety is an affine
Q-group by means of matrix multiplication.

Note that the vector space Vj carries an integral structure: the lattice of integer

points is
{∑j

i=0 qit
i qi ∈ Z

}
. Thus, the stabilizer StabZ[t,t−1](xj) of xj in

SL2

(
Z[t, t−1]

)
is the arithmetic subgroup

{(
a b
c d

)
∈ SL2

(
Z[t, t−1]

) v∞(a) , v∞(d) ≥ 0; v∞(b) ≥ −j; v∞(c) ≥ j
v0(a) , v0(b) , v0(c) , v0(d) ≥ 0

}
.

The idea of the proof is to push this result forward to other vertices.

Other vertices are translates We claim that every vertex y = (y∞, y0) ∈ X
can be written as M · xj for some M ∈ Gl2

(
Q[t, t−1]

)
and some j ∈ N ∪ {0}.

To see this, we will use that the ray

F0 := l0(0)−−− l0(1)−−− l0(2)−−− l0(3)−−− · · ·
is a fundamental domain for the action of SL2

(
Q[t−1]

)
on T0 . This follows from

the discussion in Serre [7, page 86f] and the fact that t 7→ t−1 induces a ring
automorphism of Q[t, t−1] that interchanges Q[t] and Q[t−1].

The matrix
(

tk 0
0 1

)
translates l0(k) to l0(0) as t is a uniformizing element for

the valuation v0 . Thus, within two moves, we can adjust the second coordinate
of y to l0(0) .
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Now, we consider Q[t]. In this case, the discussion in Serre [7] applies directly:
the ray

F∞ := l∞(0)−−− l∞(1)−−− l∞(2)−−− l∞(3)−−− · · ·
is a fundamental domain in T∞ for the action of SL2(Q[t]) . This allows us to
adjust the first coordinate. Note that every matrix in SL2(Q[t]) fixes the vertex
l0(0) ∈ T0. Thus, we do not change the second coordinate during the third and
final move.

We conclude:

Lemma 3.3 Every vertex stabilizer in SL2

(
Z[t, t−1]

)
is of the form

M StabQ[t,t−1](xj) M−1 ∩ SL2

(
Z[t, t−1]

)

for some j and some matrix M ∈ Gl2
(
Q[t, t−1]

)
.

We also make the following:

Observation 3.4 Since multiplication by M can lower valuations only by a
bounded amount, we can find N ∈ N such that

M StabQ[t,t−1](xj) M−1 ⊆
{(

a b
c d

)
∈ SL2

(
Q[t, t−1]

)
a, b, c, d ∈ WN

}

where WN :=
{∑N

i=−N qit
i qi ∈ Q

}
.

Finite dimensional approximations We want to use Observation 3.4 and
argue that M StabQ[t,t−1](xj) M−1 is an affine Q-group with arithmetic sub-
group

M StabQ[t,t−1](xj)M−1 ∩ SL2

(
Z[t, t−1]

)
.

This is accomplished as follows.

Lemma 3.5 Fix N ∈ N and let G be a Q-subvariety of the affine Q-variety{(
a b
c d

) ∈ SL2

(
Q[t, t−1]

)
a, b, c, d ∈ WN

}
. Assume that G is a Q-group with

respect to matrix multiplication. Then G ∩ SL2

(
Z[t, t−1]

)
is an arithmetic

subgroup of G.

Proof The integer points in WN are WN ∩ Z[t, t−1]. Thus the integer points
in G are G ∩ SL2

(
Z[t, t−1]

)
.

We note that Lemma 3.5 and Observation 3.4 imply:

Corollary 3.6 All vertex stabilizers in SL2

(
Z[t, t−1]

)
are arithmetic groups.
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Extending the argument to cell stabilizers So far we have argued that
vertex stabilizers are arithmetic. To extend this argument to stabilizers of
cells of higher dimension, note that the action of SL2

(
Q[t, t−1]

)
on X is type-

preserving. Hence the stabilizer of a cell is the intersection of the stabilizers of
its vertices. To recognize such a group as arithmetic using the above method,
we just have to choose N large enough to accommodate for all the involved
vertex stabilizers simultaneously. This concludes the proof of Lemma 3.1.

4 Comments on Question B

We shall begin with answering Question B when m = 1 and n = 2.

Proposition 4.1 If R is a 1-place ring, then SL2(R) is not finitely generated.

Proof By our hypothesis on R, there is an algebraically closed field k , and an
irreducible smooth projective curve C defined over k such that R is a subring
of the field of rational functions k(C).

Let S1 ⊆ C be the finite set of closed points given in the definition of R as
a 1-place ring, and pick some x ∈ S1 . We let T be the Bruhat-Tits tree for
SL2(k(C)) with the valuation vx . We regard T as a metric space by assigning
unit length to all edges.

Denote the geodesic in T corresponding to the diagonal subgroup of SL2(k(C))
by L, and parameterize L by an isometry l : R → L such that the end of L
corresponding to the positive reals is fixed by upper-triangular matrices.

It follows from the definition of a 1-place ring, that there exists an element
f ∈ R such that vx(f) < 0. We use this element to define for each n ∈ N a
matrix

Un :=
(

1 fn

0 1

)

Note that for sufficiently large n, there is an sn > 0 such that

Un · l([0, sn]) ∩ l([0, sn]) = {l(sn)} .

Note also that sn = −nvx(f) + a for some a ∈ R.

We claim that for any r > 0, the r -metric neighborhood of the orbit SL2(R) ·
l(0) ⊆ T is not connected. Indeed, for large n, the unique path between l(0)
and Un · l(0) contains l(sn) , thus it suffices to show that SL2(R) · l(sn) is an
unbounded sequence in the quotient space SL2(R) \T.
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Observe that for each n ∈ N, the diagonal matrix

Dn :=
(

fn 0
0 f−n

)

acts by translations on L and that Dn · l(0) = l(−2nvx(f)) . Thus, to prove
our claim it suffices to show that SL2(R) Dn · l(0) is an unbounded sequence in
SL2(R) \T.

Since point stabilizers in SL2(k(C)) are bounded, we can further refor-
mulate our task as showing the sequence SL2(R) Dn is unbounded in
SL2(R) \ SL2(k(C)) . For this, we will employ a proof by contradiction: As-
suming that SL2(R) Dn is bounded, there exist matrices

Mn =
(

an bn

cn dn

)
∈ SL2(R)

such that the image of the matrix entries of MnDn under the valuation vx are
bounded from below by a constant C . In particular,

C ≤ vx(fnan) = nvx(f) + vx(an) .

Since vx(f) < 0, it follows that vx(an) > 0 for all but finitely many n. Combin-
ing conditions (1) and (2) of the definition of a 1-place ring, vy(an) ≥ 0 for all
y ∈ C. Therefore, an is a constant function on C . As vx(an) > 0, we conclude
that an = 0. Similarly, cn = 0 for sufficiently large n which contradicts that
Mn is invertible. We have completed our proof of the claim that for any r > 0,
the r -metric neighborhood of the orbit SL2(R) · l(0) ⊆ T is not connected.

Proposition 4.1 now follows from an application of the following lemma.

Lemma 4.2 Suppose a finitely generated group Γ acts on a geodesic metric
space X . Then, for any point x ∈ X , there is a number r > 0 such that the
metric r -neighborhood of the orbit of Γ · x ⊆ X is connected.

Proof Let {ξ1, ξ2, . . . , ξs} be a finite generating set for Γ. Choose r such that
the ball Br(x) contains all translates ξi · x. Then Γ · Br(x) = Nbhdr(Γ · x) is
connected.

The question of FP2 After modest adjustments, the proofs in Section 2
apply to SL2(R) for many other 2-place rings R. Thus, the only obstruction to
substituting one of these groups for SL2

(
Z[t, t−1]

)
in the proof of Proposition A

is proving results about finiteness properties of stabilizers as in Section 3.
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Certainly there are more 2-place rings that produce stabilizers of type FP2

than the rings O[
t, t−1

]
where O is a ring of integers in an algebraic number

field, but this is not the case for all 2-place rings. For instance, this is clearly
not the case for any uncountable ring R. For a countable example, consider
Z

[
s, t, t−1

]
as the 2-place ring contained in C(s)(P1) ∼= C(s)(t) where C(s) is

the algebraic closure of the field C(s) (we take S1 := {0} and S2 := {∞}).
Then the stabilizer in SL2

(
Z

[
s, t, t−1

])
of the “standard vertex” x0 in the

product of Bruhat-Tits trees corresponding to valuations at 0 and ∞ is equal
to SL2(Z[s]) and thus is not finitely generated by Proposition 4.1 since Z[s] is
a 1-place ring.

The question of higher finiteness properties Note that the results of
Section 3 can easily be extended to the groups SLn(Z[t]) and SLn

(
Z[t, t−1]

)
.

Thus, the complication in extending our proof of Proposition A to these groups
lies in generalizing the material of Section 2.

Of course, for the general m-place ring R and for n > 2, most of the details of
this paper cannot be easily extended to SLn(R) .
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